tit

O conceito de velocidade está intimamente ligado à variação da posição. Se a posição de um objeto muda com o tempo, ele está animado de velocidade. Se ele está em repouso, sua velocidade é nula.

particula animada

Digamos que, no tempo t1, a partícula estava em x1 e que, no instante t2, ele está em x2. Admitiremos t2 > t1.

Assim, no intervalo de tempos t1 dado por

,

houve uma variação da posição, , dada por

.

Definimos então a velocidade escalar média como a razão entre a variação da coordenada e o intervalo de tempo decorrido:

.

Observe-se que a velocidade escalar média sempre faz referência a dois instantes de tempo (por isso, falamos em média). No entanto, a velocidade na qual temos maior interesse é a velocidade num determinado instante de tempo. Tal velocidade é denominada velocidade instantânea.

Para definirmos a velocidade instantânea, devemos recorrer a um conceito matemático conhecido como limite.

Limites - E-Calculo

Observemos que a velocidade média é definida tomando-se dois instantes de tempo. Para defini-la num determinado instante, basta tomarmos intervalos de tempo cada vez menores. Dessa forma estamos assegurando que, cada vez mais, não exista diferença entre t2 e t1. Portanto, estaremos falando, ao tomarmos o limite no qual tende a zero, de um só instante de tempo.

Definimos, portanto, a velocidade instantânea no instante t1 através do processo limite:

.

O processo limite definido acima tem o nome de derivada da função x(t) com respeito ao tempo e se representa:

Gil Marques

 

 
   

 


©2003 - Centro de Ensino e Pesquisa Aplicada. Todos os direitos reservados.